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The native state of a protein is regarded to be an ensemble of

conformers, which allows association with binding partners.

While some of this structural heterogeneity is retained upon

crystallization, reliably extracting heterogeneous features

from diffraction data has remained a challenge. In this study,

a new algorithm for the automatic modelling of discrete

heterogeneity is presented. At high resolution, the authors’

single multi-conformer model, with correlated structural

features to represent heterogeneity, shows improved agree-

ment with the diffraction data compared with a single-

conformer model. The model appears to be representative of

the set of structures present in the crystal. In contrast, below

2 Å resolution representing ambiguous electron density by

correlated multi-conformers in a single model does not yield

better agreement with the experimental data. Consistent with

previous studies, this suggests that variability in multi-

conformer models at lower resolution levels reflects uncer-

tainty more than coordinated motion.
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1. Introduction

It has been proposed that the ‘native state’ of a protein should

be regarded as an ensemble of conformers (Ma et al., 1999,

2002). Binding mechanisms of functional importance, as well

as crystal packing, are explained by ensemble members

interacting with complementary binding partners, with equi-

librium shifting in favor of the complex (the conformational

selection model; Huang & Wong, 2009). X-ray crystallography

is a versatile experimental technique for determination of the

three-dimensional structure of macromolecules, which has led

to key insights into how proteins function inside the cell. Upon

crystallization of the protein, some of this heterogeneity is

preserved (Rejto & Freer, 1996). Indeed, the presence of

distinct side-chain and main-chain conformations in a crystal

has been observed on many occasions (Wilson & Brünger,

2000; van den Bedem et al., 2005; Davis et al., 2006) and the

importance of accurately representing structural hetero-

geneity has long been recognized (Rejto & Freer, 1996; Wilson

& Brünger, 2000; DePristo et al., 2004; Furnham et al., 2006;

Berman et al., 2006) as even subtle conformational changes

may have important functional consequences (Koshland,

1998).

However, while several programs are available for auto-

matically building an accurate structural model into an

electron-density map (Perrakis et al., 1999; Terwilliger,

2003a,b; Ioerger & Sacchettini, 2003; DiMaio et al., 2006,



2007), these methods utilize a single-conformer model at unit

occupancy, where uncertainty is modeled with an isotropic

Gaussian distribution of the position of each atom. This

distribution, which is parameterized by the temperature

factor, accounts for small vibrations about each atom’s equi-

librium position. At high resolution, when experimental data

are abundant, fitting an anisotropic (trivariate) Gaussian

function becomes possible, requiring nine parameters per

atom to be estimated to differentiate directional motion

(Willis & Pryor, 1975). A sparser anisotropic but still harmonic

parameterization involves partitioning the protein into rigid

bodies undergoing independent displacements (translation,

libration and screw; TLS; Schomaker & Trueblood, 1968).

These harmonic error models are unable to accurately

describe distinct conformational substates resulting from

rotameric interconversions or multi-modal main-chain motion

owing to their equilibrium-displacement nature (Kuriyan et

al., 1986; Ichiye & Karplus, 1988; Wilson & Brünger, 2000).

It has been suggested that an ensemble of independent

models would be a more suitable representation of a macro-

molecular crystal structure than a single model (Furnham et

al., 2006). However, the interpretation of such an ensemble

is the subject of contentious debate. DePristo et al. (2004)

demonstrated that several distinct single-conformer models

are each equally plausible interpretations of the diffraction

data. It was proposed that differences arise from correlated

changes throughout the molecule, as well as from imprecision

in structure-determination techniques. Owing to the (partial)

independence between the models, ensemble refinement of

the alternate models led to better agreement with the

diffraction data than any single model, except at high reso-

lution. Knight et al. (2008) explored structural variability with

a family of single-conformer models obtained with the help of

a physics-based potential. They furthermore proposed a

heuristic based on ensemble refinement to distinguish struc-

tural heterogeneity from uncertainty. Using synthetic data,

Terwilliger et al. (2007) examined the relationship between

alternate models and the contents of a synthetic crystal. The

crystal structure was modeled as a set of 20 perfect structures

obtained from random perturbation of a starting model. A

single-conformer optimization program generated a diverse

collection of structural models that were compatible with the

data. It was established that the diversity among the range of

structural models did not represent the heterogeneity in the

crystal, but that such an ensemble instead represented the

uncertainty (lack of knowledge) of the model. Also using

synthetic data, Levin et al. (2007) juxtaposed this view by

validating the use of ensemble refinement of independent

models to represent heterogeneity in a synthetic crystal

generated by molecular-dynamics trajectories. An ensemble of

single-conformer starting models subjected to torsion-angle

dynamics refinement better represented the atomic positions

than a single conformation. It was furthermore shown that

such ensemble refinement led to better agreement with the

diffraction data for experimental structures over a wide range

of resolutions. Gore & Blundell (2008) augmented molecular-

dynamics ensemble refinement with combinatorial optimiza-

tion of side-chain rotamers. However, the results did not

improve agreement with the diffraction data compared with

an unperturbed single-conformer starting model.

The lack of algorithms and software that can automatically

and consistently model heterogeneity as correlated motion

necessitated these studies to use families of a fixed number of

independent models. This approach is unable to fully capture

all heterogeneous substates or to distinguish between un-

certainty and coordinated motion. Here, we present a new

approach to automatically identify and model heterogeneity

by fitting occupancies of a set of candidate conformations for

each residue to the electron density. Our main result is that at

high resolution data can be adequately explained by a single

multi-conformer model with local correlated structural

features representing discrete heterogeneity. At resolutions

below 2 Å correlated multi-conformers in a single model do

not yield better fitting statistics, demonstrating that elevated

uncertainty in the data precludes coordinated motion from

being accurately distinguished. Throughout this paper a

‘multi-conformer model’ denotes a model computed with our

algorithm, i.e. a single model with local correlated structural

features. An ‘ensemble’ denotes a family of a fixed number of

independent models.

2. Description of the algorithm

Alternate side-chain conformations often involve anharmonic

main-chain deviations (Davis et al., 2006). Our method uses a

local sample-selection protocol to compute an occupancy-

weighted set of main-chain and side-chain conformations that

collectively best represents the electron density (Dhanik et al.,

2008). Each sampling step generates a large set of candidate

conformations. A subsequent selection step concurrently fits

the occupancies of this set of samples to the electron-density

map with an efficient convex optimization algorithm in real

space. It typically assigns nonzero occupancy to at most a

handful of samples. It should be emphasized that the algo-

rithm infers the nonzero occupancies from the data; it has no

prior knowledge about the number of conformations.

2.1. Sampling and selecting conformational subsets

The algorithm starts from a main chain, a ‘starting model’,

with the side chain truncated at the C� atom. A thermal

ellipsoid is obtained from anisotropic refinement of this

residue. Six trial positions for the C� atom are selected from

sampling the principal axes of its thermal ellipsoid at a surface

of constant iso-probability. To position the C� atom at the trial

position, the ’ and  dihedral angles of a seven-residue

fragment centered around the trial atom are adjusted using an

inverse-kinematics algorithm (van den Bedem et al., 2005;

Lotan et al., 2005) to maintain ideal geometry and closure. For

each trial C� position, the side chain is added at rotameric

positions (Lovell et al., 2000) and furthermore sampled in a

small neighborhood around each � angle. For smaller side

chains the � angles are currently discretized at 10� intervals.

The temperature factors of side-chain atoms are set to in-
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crease with the number of bonds from the C� atom and are

slightly randomized. Electron-density maps for this set of side-

chain conformations are then concurrently fitted to the

observed electron-density map with a quadratic program (QP;

Gärtner & Schönherr, 2000),

minq kS�
o þ k�

P

i

qi�
c
i k2

s:t: qi � 0

0 �
P

i

qi � 1;

where �o is the observed electron-density map, �c
i is the

calculated electron-density map corresponding to conformer i,

qi is the occupancy of conformer i and S and k are scale factors.

For side chains with more than two � angles, aromatic rings

and histidine this procedure is applied sequentially. Each �
angle in turn is discretized at 2.5� intervals. The collection of

atoms that are invariant under rotation of � angles with higher

indices are fitted to the electron density with a QP. The set of

angles with nonvanishing occupancy are built on for sampling

the next � angle. In a finalizing step for both smaller and large

side chains, the complete set of all conformations with nonzero

occupancy is subjected to a selection step with a resolution-

dependent threshold constraint. A threshold constraint

requires the reformulation of the optimization problem as a

mixed-integer program rather than a QP program. Current

implementations of mixed-integer programs are not suffi-

ciently fast to allow a threshold constraint on the full set of

conformations.

2.2. Modeling proteins

The contents of an asymmetric unit are modeled by running

the algorithm independently and in parallel on each individual

residue of the protein structure. Next, fragments of subse-

quent residues with alternate main-chain conformations are

resubmitted to a selection step to obtain a constant number of

conformations and occupancies over the length of the frag-

ment. This step samples all combinations along the fragment

and selects a subset that best represents the electron density.

The atomic coordinates of the fragments together with

remaining individual residues constituting the protein are

refined with low weighting of the X-ray term (wxc_scale = 0.1

in phenix.refine). Finally, duplicate side chains, i.e. alternate

side chains for which all atoms are within maximum-

likelihood-based coordinate error of corresponding atoms of a

second alternate side chain, are removed and occupancies are

added to the atoms of the remaining side chain.

2.3. Refinement

All multi-conformer and reference models in this study

were further subjected to identical automated refinement

protocols with phenix.refine v.1.3 (Afonine et al., 2005b) unless

otherwise noted. The ligands and crystallographic waters of

starting models were removed. Coordinates, (an)isotropic

atomic displacement factors (ADPs) and occupancies were

refined in the presence of experimental phases (where avail-

able) for five macro cycles, with automatic optimization of the

X-ray and stereochemistry/ADP weights resulting in the

lowest Rfree factors. Longer refinement cycles did not appre-

ciably alter the Rfree or R values.

3. Validation with simulated data

We used simulated structure factors with Gaussian noise to

validate the algorithm. The number of true conformational

substates in simulated data is known, whereas for experi-

mental data they are subject to interpretation by a crystallo-

grapher. Data were calculated at various resolution cutoffs to

examine the effect of data resolution on the results of the

algorithm.

3.1. Preparation of simulated data

The crystal structure of an XisI-like protein (YP_324325.1)

from Anabaena variabilis, solved at 1.30 Å resolution by the

Joint Center for Structural Genomics (JCSG) and deposited in

the Protein Data Bank (PDB; Berman et al., 2000) with PDB

code 2nlv, is a dimer of 112 amino acids in length. 29 residues

have an alternate conformer modeled, eight residues were

truncated at various levels beyond the C� atom, the C-termini

were not modeled and two residues were missing at the

N-terminus of the B chain, giving a total of 212 residues.

Crystallographic waters were removed and the PDB structure

was subjected to isotropic refinement in the presence of

experimental phases, with H atoms in riding positions, thus

obtaining a reference model. The resulting temperature

factors were retained, averaging 14.36 Å2. MolProbity (Davis

et al., 2007), a widely used protein-structure quality-validation

tool, reported three rotamer outliers for dual-conformer

residues (Gln49B, Arg56B and Lys64B) and one for a single-

conformer residue (Leu97B). Identification of such outliers is

impeded by the nature of our algorithm, which relies on

sampling neighborhoods of rotamers. Simulated structure

factors were calculated from the reference model with a low-

resolution cutoff corresponding to the experimental data of

29 Å and a bulk-solvent correction (Afonine et al., 2005a)

using phenix.pdbtools. Gaussian noise with a standard devia-

tion of 10% of the magnitude of the calculated data was added

to simulate experimental errors. To obtain a single-conformer

model, the crystal structure was rebuilt into the simulated data

with noise using phenix.autobuild (Terwilliger et al., 2008) at

resolutions ranging from 1.1 to 2.4 Å. The rebuilt model was

then used as a starting model for our algorithm.

3.2. Accuracy of the algorithm versus resolution

The resulting structural model at each resolution was

compared with the reference model. A side chain was con-

sidered to be modeled correctly if it was within 1 Å root-

mean-square difference (r.m.s.d.) of the corresponding side

chain in the reference model. R.m.s.d.s were calculated over

all pertinent atoms starting at the C� atom. Side chains with

non-unique orientations (tyrosine, phenylalanine, glutamate,

aspartate and arginine) had their final � angle adjusted to
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minimize the r.m.s.d., as did side chains that are nearly iden-

tical (glutamine, asparagine and histidine). For the side chains

of valine and threonine, a density profile can occasionally be

adequately resolved by distinct combinations of rotamers

owing to a correspondence between the �1 angle and the bond

angle between the distal atoms of the side chain. R.m.s.d.

values were calculated between equivalent atoms and did not

correct for distinct but equivalent combinations of rotamers.

Truncated residues as well as the first three residues at the

N-termini and the final three residues at the C-termini were

excluded from r.m.s.d. calculations.

Fig. 1 summarizes the results. At very high resolution, the

algorithm correctly identified and modeled 86% of 29 residues

with alternate conformations. The success rate remained high

at about 70% as the resolution decreased. Of the rotamer

outliers, Gln49 was correctly modeled only at the highest

resolution. Fewer outliers were correctly modeled towards

lower resolutions, with all three modeled incorrectly at 2.1 Å.

A less desirable side effect of identifying low-occupancy

conformers is that ambiguous electron density can be falsely

interpreted as a structural feature. A residue in our model was

considered to be a false positive if the r.m.s.d. to its (closest)

corresponding conformer in the reference structure exceeded

1 Å for any of its side-chain conformations. Thus, if a multi-

conformer residue was modeled with one conformation within

1 Å and the other exceeding 1 Å, this residue was considered

to be a false positive. The false-positive rate calculated for all

212 residues approximately doubled from 5% at high resolu-

tion to just below 10% at a resolution of 2.4 Å (Fig. 1). Outlier

Leu97B was not correctly modeled at any of the resolutions.

In summary, the rate at which true multi-conformers are

identified in electron-density maps is high and only mildly

affected by resolution. When ambiguity in side-chain density

increases towards lower resolution levels, which happens

frequently at the protein surface, the algorithm introduces

low-occupancy structural features at an incremental rate to

account for electron density resulting in part from noise,

analogous to the increase in variability towards lower reso-

lution levels observed in Terwilliger et al. (2007).

4. Agreement with experimental data

We investigated the agreement of our models with experi-

mental diffraction data from 16 crystal structures across a

range of resolutions in the context of three refinement

scenarios: a single-conformer isotropic model, an ensemble

of independent (isotropic) models and a single-conformer

anisotropic model. By analyzing data fits and model varia-

bility, we established the advantages and limitations of fitting

correlated features in each scenario. It was found that our

model better represented diffraction data at resolutions higher

than 2 Å than the single-conformer isotropic model and more

consistently improved the data fit than an ensemble. Below

2 Å a single-conformer model or an ensemble of independent

models better explain the data. At resolutions where aniso-

tropic refinement is common, our algorithm accurately

discriminates anharmonic features from equilibrium

displacement.

4.1. Improved structural models at high resolution

We employed our algorithm to identify and model struc-

tural heterogeneity in experimental data starting from

single-conformer models obtained by rebuilding 16 final PDB-

deposited models with phenix.autobuild. Nonprotein atoms

were excluded in the rebuilding process. The rebuilt models

were used to calculate 2mFo � DFc map coefficients from the

experimental data (Read, 1986). The resulting map and model

resembled what would typically be a starting point for manual

refinement and served as input to our algorithm. Refinement
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Figure 1
Validation of the algorithm. The fraction of the 29 multi-conformer side
chains in the reference structure correctly identified and modeled by our
algorithm (squares) and false positives (triangles) at resolution levels
ranging from 1.1 to 2.4 Å are shown.

Table 1
16 structural models rebuilt and subjected to multi-conformer modeling.

Columns represent the PDB code of the model, resolution, number of residues
in the asymmetric unit, number of reflections and Rfree and R of the single-
conformer reference model and our multi-conformer model.

Single-conformer Multi-conformer

PDB
code

Resolution
(Å)

No. of
residues
in ASU

No. of
reflections Rfree R Rfree R

3eo6 0.97 212 216251 0.2748 0.2689 0.2532 0.2439
3f40 1.27 112 54373 0.2741 0.2691 0.2669 0.2595
2nlv 1.3 224 52774 0.2768 0.2662 0.2750 0.2533
3d02 1.3 303 133600 0.2426 0.2354 0.2365 0.2279
3e8o 1.4 238 63378 0.2668 0.2541 0.2641 0.2516
3f14 1.4 112 38973 0.2555 0.2566 0.2494 0.2515
3ccg 1.5 190 30978 0.2909 0.2577 0.2796 0.2403
2nvh 1.5 153 34800 0.2832 0.2689 0.2823 0.2639
1a0j 1.7 892 76148 0.2509 0.2205 0.2490 0.2147
3eby 1.75 153 34918 0.2806 0.2472 0.2740 0.2469
3en8 1.85 128 27989 0.2998 0.2565 0.3017 0.2489
3ecf 1.9 520 79131 0.2744 0.2444 0.2711 0.2399
2q7b 2.0 181 30620 0.2889 0.2281 0.2906 0.2504
3ele 2.1 1592 170242 0.2816 0.2544 0.2925 0.2577
3b7f 2.2 394 27216 0.2672 0.2345 0.2752 0.2372
9ilb 2.3 153 9535 0.2188 0.1658 0.2317 0.1778



statistics of the multi-conformer models together with those of

the single-conformer models are shown in Table 1 and are

summarized in Fig. 2. The geometry statistics, expressed as

root-mean-square deviations of bond lengths and bond angles,

of the multi-conformer model were comparable with those of

the single-conformer model (data not shown).

At resolutions better than 2 Å the hold-out (cross-valida-

tion) residual Rfree (Brünger, 1992) improved for all multi-

conformer models (see Fig. 2a) compared with the single-

conformer models except for one (3en8). For this resolution

range, the Rfree values obtained from our models were on

average 0.5% lower than those of the single-conformer model.

For comparison, careful manual modeling of 36 discretely

disordered residues in a 1.0 Å structure of calmodulin lowered

Rfree by 1.19% (Wilson & Brünger, 2000). The improvement

in Rfree in our study suggests that heterogeneity is indeed

represented well by a single multi-conformer model with

correlated structural features and that such a model is repre-

sentative of the set of structures present in the crystal.

At resolutions worse than 2 Å, Rfree no longer improved.

Representing ambiguity in electron-density maps below this

resolution with correlated structural features did not explain

experimental data better than a single model plus an isotropic

B factor.

The fraction of multi-conformer residues in the PDB entries

for which the full set of alternate conformations was modeled

to within 1 Å r.m.s.d. was only slightly below that observed in

simulated data, ranging from approximately 50 to 80% at high

resolution (see Fig. 2b). Additional conformers were proposed

for about 15% of residues (ranging from 10 to 30% and

increasing as the resolution falls). Note that this fraction is

elevated for PDB entries for which no alternate conformers

were deposited (1a0j and 9ilb). Extrapolating from our results

on simulated data, at lower resolutions an increasing fraction

of additional conformers were likely to account at least

partially for the increased uncertainty in the density.

Combined with the deficient Rfree values above, this suggests

that below 2 Å ambiguity in electron-density maps is no longer

dominated by correlated motion and that the variability in our

model reflects uncertainty, consistent with the observations in

Terwilliger et al. (2007).

4.2. Comparison with ensemble of independent conformers

Simultaneous refinement of an ensemble of multiple non-

interacting near-copies of a structural model provides an

alternative method of representing structural variability with

few assumptions about the origin (uncertainty or correlated

motion) of the disorder. Across a wide range of resolution

levels, ensemble refinement has been shown to improve

agreement with diffraction data over a single isotropic struc-

tural model (Burling & Brünger, 1994; Rader & Agard, 1997;

Wilson & Brünger, 2000; Levin et al., 2007; Knight et al., 2008).

Four independent diverse structural models, each consistent

with the experimental data, were obtained by rebuilding

the PDB entries using the multiple_models option in

phenix.autobuild. The four models were combined into a

single ensemble of non-interacting conformers by fixing the

occupancy of each model at 0.25. Table 2 in Levin et al. (2007)

demonstrates that at resolution levels of 1.9 Å and higher, the

best Rfree statistic is attained at ensemble sizes of four or eight,

with on average over 80% improvement of the value occurring

at ensemble size two. Our ensemble size was fixed at four;

fewer conformers in the ensemble would leave a potential

for Rfree to reach a substantial lower minimum, whereas

increasing the number of conformers carries the risk of

modeling noise. The isotropic temperature factors of the

rebuilt models were retained. The ensemble was subjected to a

refinement protocol identical to that of the single-conformer

reference models and our multi-conformer models.
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Figure 2
Summary of the performance of the algorithm on experimental data. (a)
shows Rfree values of the reference models (horizontal bars), our multi-
conformer models (circles) and an ensemble of four independent models
(crosses) as a function of resolution. (b) is similar to Fig. 1, but with
experimental data. The PDB codes of the 16 test structures are listed in
order of decreasing resolution along the horizontal axis. The fraction of
multi-conformer side chains in each of the 16 reference PDB structures
correctly modeled by our algorithm is represented by diamonds. No
alternate conformers were present in the PDB structures of 1a0j and 9ilb.
Additional conformers are represented by squares. The triangles
represent the relative improvement in Rfree. A positive value indicates
a drop in Rfree.



The Rfree values resulting from ensemble refinement

improved those of the reference model less consistently than

the structural models obtained by our algorithm (see Fig. 2).

For three models at resolutions better than 2 Å, the ensemble

Rfree values were worse than those of the reference model. In

three cases the ensemble Rfree was lower than our multi-

conformer Rfree, but an important limitation of ensemble

refinement is that it only identifies the

dominant conformer in cases where the

electron density is spatially well separated

for alternative conformations (Wilson &

Brünger, 2000; Knight et al., 2008). Fig. 3(a)

illustrates that while an ensemble model

(shown in salmon) was quite heterogeneous

and globally yielded slightly a lower Rfree

than our multi-conformer model, locally it

failed to account for difference density

corresponding to distinct side-chain confor-

mations. Our multi-conformer model

correctly identified the alternate conforma-

tions (Fig. 3b). In particular, owing to the

lack of a strong continuous gradient,

ensemble refinement was unable to transi-

tion between rotameric positions.

As in the case of the single-conformer

reference model, the Rfree values of the

ensemble model were better than our multi-

conformer model below 2 Å resolution.

4.3. Anisotropic motion or discrete
substates?

Side-chain motion that is highly aniso-

tropic, i.e. for which the ratio of the shortest

and the longest axis of the thermal ellipsoids

of the atoms is substantially below unity, can easily be

mistaken for discrete heterogeneity. The sampling conformers

in our algorithm were calculated with an isotropic temperature

factor and may therefore attempt to approximate highly

anisotropic side chains with a small number of discrete

substates. To investigate this, we refined the eight highest

resolution multi-conformer models anisotropically and com-

pared the Rfree and mean anisotropy values with those

obtained from anisotropically refined (single-conformer)

reference models.

4.3.1. Improved anisotropic models at very high resolution.

In contrast to ensemble refinement, the sparse parameteriza-

tion of our multi-conformer model allowed anisotropic

refinement against typical diffraction data at high resolution;

the number of atoms per reflection for the multi-conformer

models did not exceed 0.08 for the eight selected models. At

resolutions of 1.3 Å and better, lower Rfree values

were obtained for the anisotropic multi-conformer models

than for the anisotropic reference model (see Fig. 4), although

the gap between the Rfree values of the multi-conformer and

reference models narrowed, as is to be expected when Rfree

values fall.

Comparing the Rfree values obtained from isotropic

ensemble refinement of independent models with those from

anisotropic refinement of our multi-conformer models, we

observed that the latter were all lower, with one exception at

1.4 Å (see Fig. 4). [Note that the number of parameters was

comparable between these two refinement scenarios; the

isotropic ensembles had approximately 4 (models) � 4
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Figure 3
Stereo representation of a heterogeneous area around residues Tyr18 and Arg77 in 2nlv. (a)
The single-conformer reference model is shown in cyan. Positive density of the mFo � DFc

difference map corresponding to the single model, shown in lime, is contoured at 1.75�. (b)
Our multi-conformer model, shown in grey, neatly models alternate conformers of Asn17,
Tyr18 and Arg77 in the positive density, albeit at the cost of a small misfit in the B conformer of
Arg77. The algorithm did not find sufficient evidence for the Asn17 side-chain conformation of
the reference model. Examination of the difference map reveals a substantial negative peak in
this area (not shown).

Figure 4
Anisotropic Rfree values of the eight highest resolution multi-conformer
models (circles) and their single-conformer reference models (horizontal
bars). Crosses represent the Rfree values obtained from isotropic
ensemble refinement of independent models, which are identical to those
in Fig. 2.



(parameters) � N refinable parameters, whereas our multi-

conformer models had r�1
� 9�N parameters, where N is the

number of atoms in the single-conformer reference model and

r is the ratio of the number of single-conformer (reference)

atoms to multi-conformer atoms. From Fig. 5, we see that the

value of r is close to one half for most models.] This suggested

that some discrete isotropic substates in the ensemble may be

more appropriately represented by fewer anisotropic confor-

mational states. Indeed, it has been observed that ensemble

refinement can provide an overly isotropic view of disorder

(Wilson & Brünger, 2000) and that high-resolution anisotropic

refinement generally yields better Rfree values than isotropic

ensemble refinement (Wilson & Brünger, 2000; Levin et al.,

2007).

4.3.2. Anisotropic motion discriminated from discrete
substates. In the single-conformer reference model, atomic

displacement parameters are significantly correlated with

positional parameters owing to missing atoms (Tickle et al.,

2000), which may have resulted in an overly anisotropic

interpretation of the data. For its part, our multi-conformer

model may have given an overly isotropic representation by

incorrectly modeling harmonic anisotropic features with

closely spaced distinct conformations. The mean anisotropy

values, which are defined as the ratio of the minimum and

maximum eigenvalues of the atomic displacement tensor U

averaged over all protein atoms (Trueblood et al., 1996), of the

single-conformer model and the multi-conformer model were

surprisingly similar, ranging from 0.43 to 0.56 for the eight

models (data not shown; the mean anisotropy was calculated

with PARVATI; Merritt, 1999). The mean anisotropy based

on an analysis of structures from the PDB was found to be

0.45, with a standard deviation of 0.15 (Merritt, 1999). Thus,

the single-conformer reference models did not appear to be

overly anisotropic.

Comparing the mean anisotropy values of main-chain

atoms and side-chain atoms separately, as shown in Fig. 5, we

observe that the multi-conformer model yielded a slightly

more isotropic interpretation of the main chain (Fig. 5a; dia-

monds) than the single-conformer reference model (squares),

notwithstanding the higher ratio of single-conformer to multi-

conformer atoms (triangles) than for side chains (Fig. 5b). This

was most likely to be a consequence of the limitations of the

current implementation of the algorithm. The selection step of

the algorithm is driven by side-chain conformations; a com-

plete set of main-chain atoms (i.e. N, C�, C, O) is introduced

whenever necessary to support an alternate side chain, even if

a subtle adjustment of main-chain bond angles and dihedral

angles would accomplish a repositioning of just the C�—C�

bond to support the alternate main chain. While a very minor

effect, such extraneous closely spaced main-chain atoms

would be suggestive of multi-modal main-chain motion, not all

of which would be present in the crystal structure. The mean

anisotropy values for the side-chain atoms were nearly indis-

tinguishable, suggesting that in this case our algorithm

correctly distinguished harmonic anisotropic features from

anharmonic (multi-modal) features. Thus, an accurate fully

anisotropic multi-conformer representation of the diffraction

data is made possible by our algorithm and should be

employed at high resolution to achieve the best possible

description of harmonic and multi-modal disorder in struc-

tural models.

5. Comparison with alternate conformations modeled
by crystallographers

In addition to agreement with diffraction data, we compared

alternate conformations modeled by expert crystallographers

with those modeled by our algorithm for the 16 structural

models in the previous section. Visually identifying confor-

mational substates in electron-density maps is challenging and

subject to human interpretation. In contrast to our test with

simulated data, the ‘true’ conformational substates of the

residues are not known.
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Figure 5
Mean main-chain (a) and side-chain (b) anisotropy for eight selected
high-resolution structural models. Listed along the horizontal axis are the
PDB codes of the eight test structures in order of decreasing resolution.
The single-conformer reference models are represented by squares and
our multi-conformer models by diamonds. Triangles depict the ratio of
the number of single-conformer atoms to the number of multi-conformer
atoms.



A total of 228 residues with multi-conformer side chains

were found in the PDB entries of our test set of 16 structural

models. The algorithm performed very well on small side

chains with few dihedral angles (Cys, Ile, Leu, Pro, Ser and

Thr), disagreeing with the full set of alternate conformations

of these residues found in the PDB entries in at most about

25% of cases (see Fig. 6).

Side chains with more than two � angles, aromatic rings and

histidine were sampled in a sequential fashion, i.e. each �
angle in turn was sampled and subjected to the selection step.

As the fit to the density relied on only a subset of atoms of the

side chain, in most cases just one atom, performance was

weaker for these side chains (Fig. 6).

For the side chains of phenylalanine and tyrosine the

algorithm capitalizes on the fact that the position of the C�

atom and O� atom are invariant under rotation of �2. No

disagreement was found for the two phenylalanine residues

among our test set and only one of seven tyrosine residues

disagreed with the corresponding PDB entry. Stereo Fig. 7

shows an example of main-chain and side-chain heterogeneity

involving a tyrosine in PDB entry 3ccg. Note that the main

chain of Tyr82 deviated considerably to accommodate the two

conformations. Our model also accounts for difference density

(not shown) at the carbonyl O atom, which is present in the

PDB entry in a single conformation. In addition, Asn80

appeared to exhibit coordinated motion; the amide N atom

interacted favorably with the hydroxyl group of Tyr82 at a

distance of 3.1 Å, whereas Asn80 OD1 interacted with

partially positively charged H atoms on the edge of the

aromatic ring at a distance of 2.0 Å. MolProbity reported that

a flip was preferred for the other Asn80 conformation. The

side chain of Asn80 is truncated at the C� atom in the PDB

entry.

The results were less straightforward for the acidic side

chains aspartate and glutamate and their amide counterparts

asparagine and glutamine, disagreeing with the multi-

conformer side chains found in the PDB

entries in about 50% of cases. Density for

these residues tended to be ambiguous and

alternate conformations were sometimes

difficult to distinguish from nearby solvent

molecules, even for an expert crystal-

lographer. Fig. 8 displays two examples of

ambiguous electron density around these

side chains. In the case of a glutamine at

1.5 Å, our algorithm found evidence for an

alternate conformer, modeled at an occu-

pancy of 0.47, where a water molecule was

present in the PDB entry (Figs. 8a and 8b).

Note that the difference density contoured

at 1.1� extended from the carbonyl group

back to the C	 atom of the added conformer.

Also note that the amide of the original

conformer flipped, which is the orientation

that MolProbity preferred. The reverse

situation was found for a glutamate at 1.3 Å,

where an alternate conformation was

present in the PDB entry which was not

identified by our algorithm (Figs. 8c and 8d).

Note the asymmetry in the density around

the carboxyl group of the leftmost

conformer in Fig. 8(c), which is possibly the

result of a water molecule at partial occu-

pancy. Our algorithm did not model the

leftmost conformer. Evidence for this addi-

tional conformer appeared to be ambiguous,

as indicated by negative difference density

(Fig. 8d).

Disagreement was strongest for alternate

conformations of the side chains of arginine

and selenomethionine. The algorithm

agreed with the full set of multi-conformers

of an arginine side chain in fewer than 20%

of cases. The length of arginine, with its four

dihedral angles, together with the large
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Figure 6
Agreement with PDB multi-conformers. The fraction of all 228 multi-conformer residues
among the 16 structural models for which the algorithm disagreed with one or more of the
conformations in the PDB entry by residue type. The denominator is given by the total number
of residues of a given type with two or more alternate conformations. The numerator is the
number of residues of that type for which the algorithm failed to model the full set of alternate
conformations to within 1 Å r.m.s.d. For Ala, Cys, Phe and Pro side chains no disagreement
greater than 1 Å was found. The geometry of Thr and Val side chains allows near-equivalent
explanation of electron density with distinct combinations of rotamers; the magenta top of the
bars for these side chains indicates the fraction for which our algorithm models the density with
a different combination than that found in the PDB entry. Gly is excluded and alternate
conformations of Trp were not observed among the 16 models.

Figure 7
Side-chain and main-chain heterogeneity. Stereo representation of residues Asn80, Ser81 and
Tyr82 of 3ccg, with the PDB entry (cyan) and our model (grey) shown in 2mFo � DFc density
contoured at 0.5�. The two models overlap near-perfectly for this fragment.



number of rotameric conformations (34) that can overlap

significantly, certainly contributes to the complexity of

correctly selecting a handful that best explain the electron

density. Lysine is of equal length with a similar number of

rotamers, yet the algorithm performed very well on this side

chain. Its elongated shape throughout is likely to reduce the

number of overlapping rotamers. Of the 16 structural models,

13 were selenomethionine-labeled. One model (2nvh)

contained a methionine in a dual conformation, which was

renamed MSE for convenience. We hypothesize that the

strong scattering of Se atoms easily washes out the electron-

density profiles of neighboring C atoms, impacting on the

performance of sequential sampling.

In summary, in cases where the algorithm can fit (nearly)

complete side chains it agreed well with the manual inter-

pretation. For longer side chains the results were more

divergent, in part owing to more ambiguous density. In those

cases it is often difficult to determine which interpretation is

superior.

6. Improved estimation of model phases

It is imperative to accurately represent the data from the

earliest stages of model building (DePristo et al., 2004). In a

crystallographic experiment, the phase angle of the diffracted

beam is lost. Only magnitudes are measured on the sensitive

surface of the detector, but various techniques exist to

enhance the experiment to determine the phase angles of the

reflections. The phase angles of a macromolecular model are

estimated and improved by building and interpreting succes-

sive electron-density maps using maximum-likelihood (ML)

algorithms and can be validated by comparison with the

experimentally determined phases. Disregarding structural

heterogeneity in the successive electron-density maps or

omitting fragments from a model altogether bias the phases in

this procedure (Burling et al., 1996). In this section, we used an

exceptionally accurate set of experimental phases to investi-

gate whether our algorithm can model heterogeneity early in

the structure-determination process and thereby improve

phase estimates.

Brünger and coworkers obtained a set of highly accurate

experimental phase angles for a 230-residue fragment of

mannose-binding protein (Burling et al., 1996) at 1.8 Å reso-

lution. Both a single-conformer structural model (PDB code

1ytt) and an ensemble consisting of eight non-interacting

copies of the single-conformer model were built into the

electron-density map. The reported mean difference between

the phase angles calculated from the model and the experi-

mental phase angles |’calc � ’obs| over all reflections was

smaller for the ensemble (26.2�) than for the single conformer

(27.3�).

A multi-conformer model was obtained using the PDB

entry as a (single-conformer) starting model and an electron-

density map calculated from experimental phases as input for

our algorithm. After following a refinement protocol similar to

that reported in Burling et al. (1996), we found that our multi-

conformer model reported a slightly

smaller phase-angle difference (28.38�)

as reported by PHISTATS (Collabora-

tive Computational Project, Number 4,

1994) than the PDB entry (28.65�,

waters removed). The difference

reported by the ensemble model was

smaller still (27.73�). The modest

further decrease in the mean phase-

angle difference of the ensemble came

at the expense of a vastly greater

number of parameters. The ensemble

model consisted of 14 224 protein atoms

compared with 2409 for our multi-

conformer model (1778 for the PDB

entry). Our model proposed alternate

conformations for 97 residues (42%).

Thus, introducing correlated struc-

tural features early in the model-

building process can improve phase

estimates. In fact, while our model was

built into the experimental electron-

density map and subsequently refined

without any human intervention, its

phase set is slightly better than that of

the carefully refined PDB entry. In

(more typical) cases where experi-

mental phases are less accurate, our

algorithm would be a valuable contri-
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Figure 8
Ambiguous density around acidic side chains and their amide counterparts. (a) Residue Gln14 as
modeled in PDB entry 2nvh, with a water molecule modeled in nearby 2mFo�DFc density. (b) Our
model (grey) shown in mFo � DFc difference density calculated from the PDB entry with the water
molecule removed. The difference density, contoured at 1.1�, extends from the carbonyl group back
to the C	 atom of the added conformer. (c) Residue Glu13 as modeled in PDB entry 3d02, with two
conformers at 0.5/0.5 occupancy in 2mFo�DFc density contoured at 0.75�. (d) Our model (grey) in
mFo � DFc difference density contoured at �1.5�.



bution to iterative model-building and refinement procedures

at high resolution.

7. Discussion and conclusions

Alternate conformations are often observed in high-resolution

electron-density maps, but manually building them into

disordered electron density is time-consuming and dependent

on the experience of the crystallographer. As even the smal-

lest conformational changes can drive functional mechanisms,

accurately representing structural heterogeneity is important

for biological and biomedical research relying on structural

data deposited in the PDB. Correlated side-chain conforma-

tions could elucidate coordinated motion around, for instance,

an active site (also termed dynamic close packing; Rader &

Agard, 1997) and provide valuable insight for functional

annotation or docking experiments.

The method presented in this study is based on a simulta-

neous exploration of a very large number of alternative

interpretations of the experimental data, resulting in a single

model with local occupancy-weighted alternate conformations

that provide a near-optimal explanation of the electron

density. Validation tests on simulated data with noise estab-

lished that our algorithm identifies and models true multi-

conformers at a consistently high rate, even as the resolution

falls below 2 Å. The number of ‘false-positive’ conformers

modeled by the algorithm incrementally rises towards low

resolution as the ambiguity in the electron density increases.

Our convex optimization method is known to identify the

global optimum of the target function, i.e. within the limitation

of a discrete set of samples the conformations with nonzero

occupancy optimally explain the electron density. Hence, the

elevated variability towards lower resolution is dominated by

uncertainty rather than coordinated motion, which is consis-

tent with the conclusion of Terwilliger et al. (2007).

Our study demonstrates that the limited specificity of model

parameters at reduced resolution precludes differentation of

multi-conformers resulting from coordinated motion, which is

borne out by an increase in false positives (simulated data)

and deficient cross-validation statistics (experimental data)

below 2 Å resolution. While the threshold of 2 Å could

perhaps be improved slightly, it is a characteristic of the data

rather than the method. Indeed, the information that can be

extracted from an electron-density map is limited. Stenkamp

& Jensen (1984) proposed that individual atoms can only be

optically resolved in (noiseless) electron-density maps when

they are separated by a distance greater than 0.917dmin, where

dmin is the minimum lattice distance, i.e. their overlapping

density profiles are unimodal below this distance. At a reso-

lution dmin of 1.8 Å or worse, most covalent-bond lengths in

the structure exceed the optical resolution limit. The com-

bined density profile of closely spaced larger features such as

side chains are likely to have a unique signature exceeding this

distance, allowing our method to identify multi-conformers

beyond the optical resolution limit. Furthermore, at reduced

resolutions the peak value of an electron-density profile is

lowered and the width increases. The density profile of a low-

occupancy conformer is then easily obscured by noise. Indeed,

at occupancy levels of about 0.2 C atoms have only a slightly

higher scattering power than a H atom at full occupancy. H

atoms are typically only observed at very high resolution

(<1.2 Å)

Our method is complementary to an ensemble representa-

tion in important ways. (i) For an ensemble model the para-

meterization is kept fixed and homogeneous throughout the

model, whereas our algorithm sparsely introduces additional

parameters locally as needed, resulting in a favorable para-

meters-to-observations ratio. (ii) Contrary to our method, an

ensemble model requires a nonvanishing gradient between

alternate conformers, in the absence of which it identifies only

the dominant conformer. (iii) The (partial) independence of

the structure factors of members of an ensemble improves the

agreement with diffraction data by virtue of ‘averaging’. The

atomic coordinates of conformers tend to accumulate in well

resolved electron density, whereas scattering from spatially

widely distributed coordinates in weak electron density are

not easily distinguished from noise levels owing to their low

occupancy levels. These observations suggest that lower

resolution data, which are a result of lattice disorder and

elevated protein mobility, are more suitably represented by an

ensemble of independent models. Our method, which is

designed to identify and model discrete heterogeneity with

correlated multi-conformer features, is better suited to

represent coordinated motion at high resolution.

A detailed analysis of the performance of the algorithm by

residue type showed that it performed very well whenever it

can fit complete or nearly complete structural features to the

electron density, which is the case for smaller side chains and

certain aromatic residues. It performed less well for side

chains that are modeled with a sequential algorithm, which is

more sensitive to the optical resolution limit. Fitting large

side chains in their entirety would lead to combinatorially

large sample sizes. Instead, using a fine-grained more

extensive rotamer library (Xiang & Honig, 2001) without

additional sampling could allow the fitting of larger structural

features to the electron density, thus improving performance

without increasing the computational complexity of the

algorithm.

This work is only a step in the direction of automatically and

consistently identifying structural heterogeneity in proteins.

Few tools are currently available to automatically subject

multi-conformer structural models to quality control or to use

these snapshots of large-amplitude motions to infer functional

mechanisms. Developing such tools is a priority, as improve-

ment of experimental equipment and techniques continues to

lead to an increase in high-resolution crystal structures.

Furthermore, it will often be important at any resolution level

to determine where variability in a structural model represents

true heterogeneity, i.e. where correlated motion occurs in the

crystal structures and where uncertainty dominates. The

experimental data can be further exploited to accomplish this,

but comparative analyses with structurally homologous

protein models could highlight regions exhibiting similar

heterogeneous features.
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8. Implementation details

The software is implemented in C++ and uses the following

packages: Clipper (Cowtan, 2003), LoopTK (Dhanik et al.,

2007), CGAL (Computational Geometry Algorithms Library;

http://www.cgal.org) and COIN-OR (Computational Infra-

structure for Operations Research; http://www.coin-or.org).

The software will be made available for download as well

as through a web server at http://smb.slac.stanford.edu/

~vdbedem.
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